
It is widely accepted that the key point in
keeping modern combat aircraft up-to-

date is the mission system, i.e., the collec-
tion of computers, electronics equipment,
and sensors that allow an aircraft to per-
form its mission. Aircraft operational lifes-
pan has been steadily increasing during the
past 60 years, and can now easily exceed
three decades (see Figure 1). Mission sys-
tems quickly become obsolete during this
time due to rapidly advancing technology
and fast-changing international scenarios.
For example, the capability of new
computer systems, or the flexibil-
ity required by recent peacekeep-
ing and peace-enforcing operations
were not even foreseeable when the
design of some modern aircraft began.

As final users, Air Forces are
the best candidates to identify and ana-
lyze new requirements to be implement-
ed. The availability of standard-based,
off-the-shelf sensors and equipment, and
the importance of software in present air-
borne systems offer new opportunities to
upgrade aircraft without having large
industrial facilities such as those neces-
sary to modify airframes or engines.
Thus, many users have developed in-
house facilities to evaluate software
running on their aircraft, experiment with
potential enhancements, and eventually
introduce approved modifications.

Since airborne software is vital, yet only
a component of a higher complex system, a
systemic approach must be adopted in
designing the corresponding development
process. It is crucial that the software
process adopted for a specific development
or maintenance purpose is customized to
achieve the goals of the encompassing sys-
tem project, and ultimately of the organi-
zation. For military organizations in partic-
ular, technical problems posed by the com-

plexity of the target systems often have to
be dealt with in combination with specific
needs and constraints such as ad-hoc capa-
bilities at time of international crisis, avail-
able experience, staff turnover, budget
reductions, relations with and between
industrial partners, etc.

By describing and analyzing a real
project [1,2], this article shows how

different software development
approaches and techniques, usually applied
in isolation, can be selected, customized,
and combined to better meet organization-
al needs. The project was undertaken to
investigate the feasibility of enhancing an
aircraft mission system by integrating a
laser designation pod. Here we describe the
software aspects of the integration by
focusing on the software process devised to
support the integration study, and on the
rationale behind the choices made. More
details about this specific project can be
found in [1,2].

In this article we briefly introduce the
integration problem then provide an

overview of the proposed software process,
and of its rationale. Then we discuss the
final results by providing both qualitative
and quantitative insights. Finally, we con-
clude and summarize the benefits of the
adopted approach.

Integration Problem Overview
When installed on an aircraft as an external
store and connected as an added-in facility
to the mission system, a laser illuminating
pod can greatly improve both the naviga-

tion and attack performance of the
aircraft. In practice, such a sub-

system will allow the pilot
to sight a ground point,
obtain the relative posi-

tion, and eventually illuminate
it with a laser beam for subsequent weapon
guidance.

An initial pre-feasibility study only had
defined the guidelines for the integration:
The laser pod had to be used as a targeting
sensor for the precision delivery of laser-
guided bombs and as a navigation sensor.
An integration project was therefore set off
as a low-budget short-term activity aiming
at two goals:
1. Fully investigate the feasibility of equip-

ping the aircraft with such a subsystem.
2. If feasible, identify an economical and

low-risk integration solution.
After an initial assessment of the integra-
tion problem, various risk-prone areas were
identified.

Complexity of Solution Space
Finding a solution to the integration prob-
lem means to define a complete and con-
sistent set of requirements that the new
system (i.e., the aircraft equipped with the
laser pod) has to satisfy. Only a minor set
of these requirements concern functional

10 CROSSTALK The Journal of Defense Software Engineering September 2001

Customizing the Software Process to Support
Avionics Systems Enhancements

Dr. Paolo Donzelli and Roberto Marozza

When an organization considers enhancing a software-intensive system, particularly an avionics system, selecting the
process to be adopted must include consideration of the particular encompassing project. This includes the applica-
tion domain, the size and complexity of the final product, the hosting system characteristics, etc. Simultaneously, it
must be driven by the specific organization’s goals, environment, and maturity. By describing and analyzing a real
project, this article shows how different approaches and techniques, usually applied in isolation, can be selected, cus-
tomized and combined to design a software process that better satisfies the organization’s goals and meets its con-
straints. The project was undertaken to investigate the feasibility of enhancing an aircraft mission system by inte-
grating new capabilities, and eventually to identify a quick, low-cost and low-risk solution. An uncertainty-driven
product architectural framework together with an ad-hoc simulation-based supporting environment were used to
combine in an effective and controlled fashion the waterfall, the Rapid Application Development, and the
Incremental Development models.

“It is crucial that the
software process

adopted for a specific
development or main-

tenance purpose is
customized to achieve

the goals of the
encompassing system

project ...”

Customizing the Software Process to Support Avionics Systems Enhancement

September 2001 www.stsc.hill.af.mil 11

aspects, e.g., the data the laser pod has to
provide as navigation sensor; most of them
are related to non-functional aspects.
These include both human factors such as
pilot workload, pilot performance, and sit-
uation awareness [3], and system quality
attributes such as usability, safety, reliabili-
ty, time, and cost [4].

In comparison with functional require-
ments, non-functional requirements are
highly subjective (e.g., test and front-line
pilots can have a different perception of the
same problem), strictly related to the par-
ticular context, and more difficult to dis-
cover, state, and validate without interact-
ing with the final system. This increases the
dimension of the solution space, intro-
duces instability in the requirements, and
makes it difficult to compare different
alternatives.

Complexity of Target Platform
Most of the functions in the mission sys-
tem are performed via a cooperation of two
or more subsystems. As a consequence,
modifying or enhancing such functions
requires operating on different equipment,
which may adopt different hardware and
software solutions requiring a broad range
of skills not usually available in the same
personnel. Moreover, equipment is pro-
duced and maintained by different con-
tractors, so that the Air Force is faced with
different levels of product visibility, pro-
curement processes, schedules, and costs.

Novel Aspects of Project
Being a single-seat aircraft, the problem of
adding the control of the laser pod to all
the other tasks usually carried out by the
pilot needed to be completely investigated,
both for safety and performance reasons.

Project Organization
Based on the initial goals, constraints, and
outcomes of the initial assessment of the
integration problem (Integration Problem
Overview), the project has been organized
following some simple guidelines:
• Minimize the impact of integration on

the aircraft mission system.
• Exploit internal resources and capabili-

ties, both in terms of personnel and
equipment.

• Reuse previous experiences, i.e., lessons
learned and available products, e.g.,
requirements, algorithms, software.

• Allow uncertainty to be part of the
project to improve the ability to inves-
tigate the solution space.

In practical terms, this has led to making
precise choices in organizing the team and
defining the software process.

The Team Organization
The project team was structured into three
different sub-groups with specific compe-
tencies, responsibilities, and workload:
• The software development team, tasked

with managing the whole project and
developing the necessary software, was
composed of two software engineers and
four technicians. The group members
worked together at the requirements
level; subgroups were identified to bet-
ter deal with the specific needs of the
various subsystems affected by the inte-
gration.

• The hardware support team, tasked
with implementing the avionics integra-
tion of the laser pod, was composed of
two technicians. In addition, they
played the role of logistics and mainte-
nance experts during the requirements
definition stage.

• The user group, tasked with collaborat-
ing during the requirements discovery
and validation phases, was composed of
two test pilots. Both of them had a spe-
cific experience with laser pod-based
operations and were supported by front-
line pilots.

Such a team structure provided us with
great versatility in tackling personnel-relat-
ed problems. First, it allowed us to really
involve the stakeholders and exploit avail-
able expertise. Second, it limited the
impacts of staff turnover, unavoidably due
to the project schedule, by dealing with
them within each group. Third, it incre-
mented the degree of concurrency between
the different tasks to be performed within
the organization, regarding this or other
projects. In particular, both the hardware
support team and the user group could bet-
ter plan their own involvement in this proj-
ect without hindering other projects.
Meanwhile, the software development
team, thanks also to the adopted software
process (see The Software Process below),
was not affected too much by some
unavoidable delays that the other subgroups
had in providing feedback and support.

The Software Process
The difficulty in adopting a classical water-
fall-based process [5], i.e., a process based
upon a series of sequential steps that goes
from requirements analysis to system deliv-
ery, emerged clearly just after a first attempt
at defining the initial set of requirements.
The waterfall model makes the develop-
ment process more visible by providing a set
of milestones around which the manage-
ment can plan, monitor, and control a proj-
ect. However, it is based on the assumption
that most of the requirements can be frozen

at the outset of the project, whereas it is well
recognized to perform poorly in case of
requirements instability [6].

In our case, not only was it impossible
to state precisely most of the requirements,
but there also were quite a few system areas
about which only general and soft consider-
ations could be made. For example, we
could identify the need for a pilot interface
suitable to reduce workload and improve
situation awareness, but we could not trans-
late this into a series of requirements able to
be implemented.

Thus a specific architectural framework
in which to develop the system was pro-
posed. It had to be flexible to accommodate
uncertain software development approach-
es, yet rigid enough to guarantee a visible
development process required by the organ-
ization. As illustrated in Figure 2 (see page
12), the software system was designed as a
collection of interacting components, each
of them acting as a focus for a particular
requirements area with a specific uncertain-
ty level.

A set of man-machine interface compo-
nents, a pod-control component, and a net-
work interface component form the archi-
tecture.
• The man-machine interface compo-

nents represent the software to be added
onto the displays (e.g., the head-up dis-
play) and the control panels of the air-
craft cockpit. They modify the pilot-air-
craft interface handling all the informa-
tion to be displayed and the user inter-
actions enabling the pilot to use the
laser pod. Here the level of uncertainty
was highest: The user group drafted
some guidelines about the pilot opera-
tions (mainly on the basis of previous
experience), but could not be more pre-
cise about the interaction with the indi-
vidual pilot. Even the specific displays
and switches to be used were matters for
discussion, leaving the number of com-
ponents to be developed an open issue.

F-84F

F-4 F/B-111

P-51

EF-2000

AMX

0

10

20

30

40

50

60

Years

in-service

development

1940 2000

Figure 1: Aircraft Operational Life

Avionics Modernization

12 CROSSTALK The Journal of Defense Software Engineering September 2001

• The pod-control component imple-
ments the algorithms to physically con-
trol the pod, for example allowing the
pilot to steer the pod in a specific direc-
tion. Although many of such algorithms
were reused (from available literature,
code, etc.), the component still present-
ed some degree of uncertainty, mainly
regarding its real-time performance in
the new avionics environment. In
designing and allocating the software,
both measurable parameters (computa-
tion elapsed time) and pilot judgement
(stability of the track image) had to be
taken into account.

• Finally, the network interface compo-
nent was specifically designed to handle
the message passing between the laser
pod and the physical systems hosting
the other components. This resulted in
the most stability, in fact, the laser pod,
an off-the-shelf item, dictated most of
the messages and the component had to
be allocated onto the main digital com-
puter.

The adopted architectural framework (see
Figure 2) allowed us to combine different
development approaches in a controlled
fashion.

A full rapid application development
(RAD) approach was applied to the man-
machine interface components, which were
developed as a set of concurrently evolving
prototypes [7]. In RAD, the exact opposite
of the traditional software approach is held
true: Time and resources are fixed, as far as
possible, and the requirements are allowed
to change. This suited our situation well;
the stakeholders did not have a clear initial
idea of the system to be developed. This was
expected to mature over time, and different
solutions appeared to be equally valid. RAD

enabled us to rapidly construct primitive
versions of the components by heavily
involving the members of the user group.

The user group’s key role in the devel-
opment process has been widely recognized.
The major advantages of the so-called user-
centered approaches [8] come from letting
the user participate in and contribute to the
design process from its first inception
onwards. Through the user group, the users
felt that they were an active part of the
development team. They took part at the
initial design sessions, and their feedback
was incorporated to correct, refine, and
enrich the emerging system properties until
the final set of components was obtained.
For the pod-control component, a throw-
away prototype [9] was used to quickly
compare the different algorithms available
before setting off on a more traditional
waterfall-based approach. To develop the
network interface component, a waterfall-
based process was applied from the begin-
ning.

The components were developed in
parallel with tight collaboration among the
team groups and a continuous exchange of
results, experience, and products. An ad-
hoc Avionics Simulation Station was devel-
oped [10] that supported the whole inte-
gration study (see Figure 3). Apart from the
Software Development and Testing Stations
used to modify the software and test it
directly on the airborne computers, the
Avionics Simulation Station consists of a
mixture of real and simulated equipment.
For example, while all the main sensors are
simulated (inertial navigation system, radar,
etc.), a real laser pod is used together with
real units associated with the cockpit (dis-
plays, control panels, etc.). The cockpit
allows a pilot to form part of the overall sta-

tion so that the effects of the investigated
laser pod integration on pilot performance
can be determined.

The Avionics Simulation Station
enabled us to work with a variable combi-
nation of components running on their
allocated computers, and components still
at a prototype level. In particular, the net-
work interface component was developed
directly on the main digital computer. The
other components were implemented using
a high-level equipment simulation tool to
evaluate them in a real environment with-
out affecting the aircraft equipment. Such a
simulation tool allowed us also to adopt for
the prototypes the same programming lan-
guages used by the potential hosts, highly
simplifying the subsequent porting phase.

The prototypes were used to enrich the
Avionics Simulation Station with the laser
pod. Then the Avionics Simulation Station
was employed to analyze the pod operating
procedures with the members of the user
group. Only when the prototypes reached a
stable state, were they moved to the corre-
sponding computers to finalize evaluation
and testing. This environment guaranteed
the right trade-off between flexibility and
rigor to support the integration study.
Different alternative solutions were easily
investigated (e.g., a different set of compo-
nents or different allocation of the same
components), while the use of real equip-
ment provided early feedback on the pro-
ject’s technical feasibility. For example, the
real-time performance of the pod-control
component on the selected target computer
could be assessed while the user group was
still defining the interface to be adopted.
Furthermore, it strongly reduced our
dependency upon the equipment manufac-
turers, for example by enabling us to involve
them only at the final stage (the porting
step), thus reducing the associated costs and
delays.

Although RAD is a good method to
deal with unstable requirements, it suffers
when applied to big projects or when
requirements instability is not confined to a
specific area. In both cases, it can in fact lead
to an explosion of project complexity and of
associated risks. Whereas the initial archi-
tectural framework (see Figure 2) enabled us
to manage instability in order to increase
our control over the project, we decided to
combine RAD with an incremental devel-
opment method. In other words, the initial
unstable set of requirements was broken
down into three more manageable subsets:
• Set A regarding the basic laser pod con-

trol functions (e.g., in-flight and on-
ground pod test, basic pod orientation,
etc.).

• Set B incrementing Set A with the laser

Network Interface

Pod-Control

Man-Machine Interface

Airborne Network
System

High Uncertainty

Medium Uncertainty

Low Uncertainty

Figure 2: An Uncertainty-Driven Software Architectural Framework

September 2001 www.stsc.hill.af.mil 13

Customizing the Software Process to Support Avionics Systems Enhancement

pod-based navigation functions (e.g.,
use of the pod to acquire an on-ground
point position).

• Set C incrementing Set B with the
laser pod-based attack functions (e.g.,
use pod capabilities to support a spe-
cific ground attack mode).
In moving from Set A to Set C, the

complexity of the man-machine interface
clearly increased. By requiring more infor-
mation to be displayed and more controls
made available, the incremental approach
combined with RAD allowed us to gradu-
ally involve the user group, which had
time to face new problems (new require-
ments) starting from a previously estab-
lished platform (already implemented
requirements). Besides facilitating require-
ments capturing and formalization, such
an approach led also to better-designed
software, for all the involved components.

The resulting software process is
schematized in Figure 4, which summa-
rized what has been said so far. As shown
in Figure 4, the process is based on three
main phases. Phase 1 is the initial require-
ment analysis phase during which the
decisions of adopting the architectural
framework depicted in Figure 2 and of
dividing the requirements into incremen-
tal subsets were made. During Phase 2, the
system evolved as a set of components and
prototypes by first implementing the
requirements set A (version A), then the
set B (version B), and finally the set C
(version C). For each version, using
Avionics Simulation Station led to correc-
tion and refinement loops. We only passed
on to Phase 3 when a high confidence in
version C was reached. Here the compo-
nents still at a prototype level were ported
on the real equipment, and the final sys-
tem test and evaluation performed.

Project Results
The integration study and the supporting
software process allowed us to fully inves-
tigate the integration feasibility (goal 1),
and then to identify what we considered
an economical and low-risk integration
solution (goal 2).

The flexibility of the process and prod-
uct enabled us to find both quantitative
and qualitative answers from the early
stage of the project. Aspects such as the
real-time performance of the modified
mission system, the compatibility of the
new software with the target equipment,
and the pilot needs were carefully investi-
gated. In particular, it was assessed that it
was feasible for the laser pod to be operat-
ed by the pilot while flying the aircraft.

The software produced consisted of

about 11,000 lines of code (LOC); 1,500
LOC of Ada were written as ancillary code
to adapt the prototypes to the Avionics
Simulation Station. The impact on the
total airborne software was relatively small
(with an average of 1 percent modified
and 5 percent new software on the various
airborne computers), thus sensitively
reducing the effort required to reevaluate
and test the existing functions.

The development lasted for 10 months
during a calendar time of 15 months. This
difference was due mainly to preemption
of personnel for other tasks (about three
months) and to some bureaucratic delays
with partner industries (about two
months). Most of the effort (about 90 per-
cent) was spent on Phase 2, with 45 per-
cent required for development of version
A, 30 percent for version B, and 15 per-
cent for version C. Quality confirmation
of the components and prototypes form-
ing the system version C, and of the
adopted process Phase 3 required only 5
percent of the effort. For the porting, three
people from the manufacturers were
involved for a limited number of meetings
and a total of six days of actual software
development. The final testing and evalu-
ation revealed only some minor defects.

Conclusions
This article described the software process
adopted to support the integration study
of a new weapon system onto an existing
military aircraft in the context of a low-
cost, high-confidence-of-success project.

To integrate two systems means to

identify the synergistic combination that
best exploits them both. At the initial
stage, only some general guidelines are
usually fixed, whereas many different solu-
tions appear equally valid and worth inves-
tigating. Such uncertainty drove the
design of the initial software architectural
framework in which the waterfall, the
RAD, and the incremental software devel-
opment models were combined in an
effective and controlled fashion. The
process provided the necessary mix of visi-
bility, flexibility, and performance, taking
into account the available personnel, time,
and funding, as well as increasing the orga-
nization’s experience and improving col-
laboration with the industrial partners.u

Software
Development and Testing

Simulated Equipment

Pilot Displays and
Control Panels

Pilots
Stick
and

Throttle

Real Equipment

Airborne Network System

Airborne
Computers

Aircraft Model

Aircraft Sensors Models

Laser Pod

Figure 3: Architecture of the Avionics Simulation Station

System
Development

System
Evaluation

(on the ASR)

Components
&

Prototypes

Feedback
(errors,
new
require-
ments)

Requirements
set C

Requirements
 set B

Requirements
 set A

Phase 2

System
Evolution

Phase 3

Initial Requirements Analysis

Phase 1

System
Version

Architectural
Frameworks

Prototype
Porting and
finalization

Final System
Test & Evaluation

(on the ASR)

Final System
Feedback
(errors, new
requirements)

Delivered System

Figure 4: Adopted Software Process

Avionics Modernization

14 CROSSTALK The Journal of Defense Software Engineering September 2001

References
1. Donzelli, P., Marozza R. “Laser

Designation Pod on the Italian Air
Force AMX Aircraft: A Prototype
Integration,” Proceedings of the
NATO/RTO (Research and
Technology Organization) Systems
Concepts and Integration Panel Joint
Symposium on Advances in Vehicle
Systems Concepts and Integration,
Ankara, Turkey, April 26-28, 1999,
published by NATO-/RTO, BP 25, 7
Rue Ancelle, F-92201 Neuilly-Sur-
Seine Cedex, France, April 2000,
ISBN 92-837-0011-2.

2. Donzelli, P., Marozza R. “Un Laser
Pod Anche Per l’ AMX,” Rivista
Aeronautica (Italian Air Force
Journal), Dec. 2000, Roma, Italy.
<www.aeronautica. difesa.it>.

3. Prince, C., Salas E., and Emery L.
“Situation Awareness: What Do We
Know Now That the ‘Buz’ Has
Gone?” Engineering Psychology and
Cognitive Ergonomics, Vol. 3:
Transportation Systems, Medical
Ergonomics and Training, pp 215-
222. Edited by Don Harris, Ashgate
Publishing Ltd, Aldershot, England,
1999.

4. Chung L., and Nixon B. “Dealing
with Non-functional Requirements:
Three Experimental Studies of a

Process Oriented Approach,”
Proceedings of the International
Conference on Software Engineering,
Seattle, WA, USA, 1995.

5. Mills, H.D., O’Neill, D., Linger,
R.C., Dyer, M., and Quinnan, R.E.
“The Management of Software Engin-
eering,” IBM System Journal, 24 (2),
1980.

6. Bohem, B. “Anchoring the Software
Process,” IEEE Software, Vol. 13, No.
14, July 1996.

7. DSDM Consortium. Dynamic
Systems Development Method,
Version 3. DSDM Consortium,
Ashford (UK), 1997.

8. Norman D. and Draper S., “User
Centered System Design,” LEA, Hills-
dale, N.J.,1986.

9. Stytz M.R., Adams T., Garcia B.,
Sheasby S.M., and Zurita B. “Rapid
Prototyping for Distributed Virtual
Environment,” IEEE Software, Vol.
14 No. 5, Sept./Oct. 1997.

10. Donzelli, P., Moulding M.R.
“Developments in Application
Domain Modeling for the Verification
and Validation of Synthetic
Environments: A Formal Require-
ments Engineering Framework,”
Proceedings of the Spring ‘99
Simulation Interoperability Work-
shop, Orlando, FL, March 1999.

COMING EVENTS

October 15-18
SEI 16th Annual

Software Engineering Symposium
Washington D.C.

www.sei.cmu.edu/symposium

October 22-26
Systems Engineering

and Supportability Conference
San Diego, CA

http://register.ndia.org/interview/
register.ndia

October 28 - November 1
5th Annual DoD Symposium and Exhibition

Kansas City, MO
www.ndia.org

October 29 - November 2
6th Annual Expeditionary

Warfare Conference (EWC)
Panama City, FL

http://register.ndia.org/interview/
register.ndia?~brochure~270

November 6-8
TechNet Asia-Pacific 2001

Honolulu, HI
www.afcea.org

November 12-16
5th International Software and Internet

Quality Week - Europe 2001
Brussels, Belgium

www.qualityweek.com

November 13-15
1st Annual CMMI Technology Conference

and User Group
Denver, CO

djenks@ndia.org

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

At the Heart of the Revolution
Lake Buena Vista, FL

www.iccbss.org

March 19-21, 2002
Federal Office Systems Exposition 2002

Washington D.C.
www.fose.com

April 28 - May 3, 2002
STC 2002

“Forging the Future of Defense
Through Technology”
Salt Lake City, UT
www.stc-online.org

About the Authors
Paolo Donzelli, Ph.D.,
is an advisor with the
Department of Infor-
matics of the Office of
the Prime Minister in
Italy. A former serving

engineering officer with the
Operational Testing Centre of the
Italian Air Force, Dr. Donzelli was a
senior research fellow with the
Computing Information Systems
Engineering Group, at RMCS,
Cranfield University (UK). Dr.
Donzelli has a variety of interests in
the software engineering area, and his
Ph.D. thesis was in software process
quality modeling.

Office of the Prime Minister
Department of Informatics
Via della Stamperia 8
00187 Roma, Italy
Phone: (39) 0335-736-5194
Fax: (39) 06-6779-4736
E-mail: p.donzelli@palazzochigi.it

Roberto Marozza was a
serving engineering
officer with the Italian
Air Force before mov-
ing into industry. He
has been program

manager of the on-board mission soft-
ware for the Anglo-Italian EH-101
ASW helicopter, and has also worked
in some airborne software projects for
the Tornado and the AMX attack air-
craft. Recently, he was involved at
Aerospatiale in the software require-
ments definition of the ATV, the orbit-
ing vehicle that will transfer
unmanned payloads from ground to
the International Space Station.
Marozza has a Laurea Degree in elec-
tronics engineering.

Banca d’Italia
Largo Guido Carli 1
Frascati, 00040 Roma, Italy
Phone: (39) 0348-654-2067
E-mail: rmarozza@libero.it

